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Abstract

Current research on agentic visual reasoning enables deep multimodal
understanding but primarily focuses on image manipulation tools, leav-
ing a gap toward more general-purpose agentic models. In this work, we
revisit the geolocalization task, which requires not only nuanced visual
grounding but also web search to confirm or refine hypotheses during
reasoning. Since existing geolocalization benchmarks fail to meet the need
for high-resolution imagery and the localization challenge for deep agen-
tic reasoning, we curate GeoBench, a benchmark that includes photos
and panoramas from around the world, along with a subset of satellite
images of different cities to rigorously evaluate the geolocalization abil-
ity of agentic models. We also propose GeoVista, an agentic model that
seamlessly integrates tool invocation within the reasoning loop, including
an image-zoom-in tool to magnify regions of interest and a web-search
tool to retrieve related web information. We develop a complete training
pipeline for it, including a cold-start supervised fine-tuning (SFT) stage
to learn reasoning patterns and tool-use priors, followed by a reinforce-
ment learning (RL) stage to further enhance reasoning ability. We adopt a
hierarchical reward to leverage multi-level geographical information and
improve overall geolocalization performance. Experimental results show
that GeoVista surpasses other open-source agentic models on the geolocal-
ization task greatly and achieves performance comparable to closed-source
models such as Gemini-2.5-flash and GPT-5 on most metrics.
� Webpage: https://geo-vista.github.io

1 Introduction

Recent advances in Vision-Language Models (VLMs) (Wang et al., 2024; Wu et al., 2024; Chen
et al., 2025) enable deep reasoning over multimodal queries by invoking image-centric tools
and utilizing long Chain-of-Thought approaches (Shao et al., 2024a; Hu et al., 2024), allowing
these models to handle much more complex tasks. Some recent works (Su et al., 2025; Zheng
et al., 2025) attempt to integrate seamless tool invocation into multi-turn interaction through
reinforcement learning.

Among the latest multimodal reasoning milestones (Gao et al., 2025; Zhang et al., 2025c;
Wang et al., 2025; Xie et al., 2025), the OpenAI o3 model (OpenAI, 2025b) enables a dynamic
reasoning process with different tools integrated into it. This marks the transcendence
of multimodal reasoning from one-turn queries to smooth “thinking with images” like
humans, achieving a coordinated fashion of interleaving textual CoT (Wei et al., 2022) with
image manipulation and other tool invocations. Some follow-up works (Lai et al., 2025;
Zhang et al., 2025b) also explore combining image-centric tools with open-sourced models
to achieve similar performance. However, these works only emphasize image manipulation
during multimodal reasoning, thus making problem-solving rely solely on the model’s
inherent knowledge and lacking appropriate access to external information retrieval tools
like web search.
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You are a geolocation assistant. 
Please determine where this 
photo was taken?

GeoVista Reasoning

<think> Additionally, the text 'NIEMEIER' is visible on a sign at a bus stop. 
The surrounding urban context includes modern multi - story buildings, 
a … background noise. This is a commercial/business sign, aiding 
geolocation via local business names. Ambiguity: 'NIEMEIER' could be a 
generic name, but the architecture (Fernsehturm, tram infrastructure) 
strongly implies Berlin, Germany.</think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[1673, 519, 1780, 568 ] }}</tool_call>

[Begin of Agentic Thinking] <think>I focus on the blue road sign with 
white text: ‘TUNEL EL PARAISO’ (Spanish for ‘EL PARAISO TUNNEL’). The 
text is clear, bold, and in Spanish (Latin script), indicating a geographic 
place name. Nearby visual context includes a yellow-tunnel entrance 
(white exterior with ...</think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[839, 543, 1023, 619]}}</tool_call>

<think>Moreover, I focus on the mural on the steep hillside rock face: 
‘#SOMOS TRICOLOR’ (Spanish for ‘WE ARE TRICOLOR’). The text uses 
Spanish, a key language in Brazil, and references …</think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[1009, 229, 1406, 440]}}</tool_call>

<think>The text 'TUNEL EL PARAISO' (Spanish for 'EL PARAISO TUNNEL') is a 
critical piece of geographic information. Tunnel names often have specific 
locations, and searching this term will help identify the city/region where 
this tunnel exists. The Spanish language … likely Rio de Janeiro ...</think>

<tool_call>{"name": "search_web", "arguments": {"query": "TUNEL EL 
PARAISO location"}}</tool_call>

<tool_response>"result": [
{
"href": "https://commons.wikimedia.org/wiki/File:Tunel_El_Paraiso.jpg",
"body": "English: Tunel El Paraiso is located in the Francisco Fajardo Highway in 

Caracas…"
},
{
"href": "https://en.wikipedia.org/wiki/Francisco_Fajardo_Highway",
"body": "Francisco Fajardo Highway - Wikipedia\nJump to content…"

}, 
… and 8 remaining items. </tool_response>

<answer>… This combination of textual evidence (Spanish-language signage, 
tunnel name), geographic context (hillside favela - style housing), and 
infrastructure clues confirms the location is Caracas, Venezuela, near the El 
Paraíso Tunnel segment of the Francisco Fajardo Highway.</answer>

Can you guess the shooting 
location from this image?

[Begin of Agentic Thinking] <think>The text 'EINFACH ALLES Mieten' is 
visible on the same sign, below 'NIEMEIER' and 'MIETSTATION'. This 
German phrase (translating to 'Simply Everything to Rent') further 
confirms the location is in a German-speaking … Fernsehturm.</think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[1526, 486, 1606, 502 ] }}</tool_call>

<think>The sign 'NIEMEIER MIETSTATION' with telephone number '01805-
308050' (a Germany - style toll - free number format) and 'EINFACH ALLES 
Mieten' (German for 'Simply Everything to Rent') suggests …  based 
business, narrowing down the location to Germany, likely Berlin.</think>

<tool_call>{"name": "search_web", "arguments": {"query": "NIEMEIER 
MIETSTATION 01805-308050 EINFACH ALLES Mieten" }}</tool_call>

<tool_results>"result": [
{
"href": "https://www.niemeiergmbh.de/mietstation.html",
"body": "Mietstation - NIEMEIER Mietstation GmbH Image 1: Niemeier …"

},
{
"href": "https://www.niemeiergmbh.de/",
"body": "#### für ganz Berlin/Brandenburg Mehr Umfassender Service, beste…"

}, 
… and 7 remaining items. </tool_response>

<answer> The sign also includes 'EINFACH ALLES Mieten’ … aligns with Berlin. 
Combining 'EINFACH ALLES Mieten' with 'Germany' will help confirm the 
country (Germany, specifically Berlin) by … Berlin citiescapes.</answer>

GeoVista Reasoning

<think> Got it, let's try to figure …</think> [End of Agentic Thinking] <think>…</think> [End of Agentic Thinking]

Figure 1: Agentic thinking of GeoVista for Real-world geolocalization. During the
reasoning loop, our GeoVista seamlessly integrates the image–zoom-in tool to magnify
regions of interest and the web-search tool to retrieve relevant information. This web-
augmented visual reasoning process enables GeoVista validate or refine its geolocalization
judgments.

To enable a new axis for agentic multimodal reasoning, we revisit a real-world sce-
nario—geolocalization, in which models are required to extract visual clues in high-
resolution images and rely on the web search to validate or refine their hypotheses (Li
et al., 2025; Zhang et al., 2025a; FutureSearch et al., 2025). This makes the geolocalization sce-
nario naturally combine visual tools and information retrieval tools. To rigorously evaluate
the models, we propose GeoBench, which consists of high-resolution photos and panoramas
of global coverage. To ensure localizability as well as challenge, we remove non-localizable
ones and easily recognizable landmarks. To gain insights, GeoBench also supports level-wise
evaluation and nuanced evaluation to fully assess models’ geolocalization capability.

We also propose our GeoVista, an agentic multimodal model, which seamlessly integrates
tool invocation like web-search and image-zoom-in within a dynamic reasoning loop for
complex geolocalization queries. As illustrated in Fig.1, GeoVista actively decides when
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and how to invoke tools, enabling a dynamic process of visual clue extraction and external
information retrieval, reproducing reasoning behaviors similar to closed-source models like
OpenAI o3. It not only utilizes visual operation and information retrieval tools to validate
its hypotheses but also uses external information retrieval (Mühlbacher et al., 2024; Zhou
et al., 2024; Pang et al., 2025) to justify its previous wrong hypotheses and reach the correct
solution.

We also provide a complete pipeline for GeoVista training, including cold-start and reinforce-
ment learning. First is the cold-start supervised finetuning (SFT) for learning tool-use and
reasoning priors: We apply closed-source VLMs to generate tool invocation proposals with
their rationales, execute the tool proposals to obtain the observations, and then serialize the
rationales, tool invocations, and observations to generate multi-turn reasoning trajectories
in order to conduct cold-start supervised finetuning. We control the number of interaction
turns by limiting different tool invocation proposals.

Second is the reinforcement learning to further incentivize reasoning ability (DeepSeek-AI
et al., 2025). We apply group relative policy optimization (GRPO) (Shao et al., 2024b) with
geological labels to train the models. Geological information often contains hierarchical
information; to fully utilize the multi-level information, we design a hierarchical reward
based on multi-level labels. This simple yet effective strategy encourages the models to
learn hierarchical geological contexts from the images and make more accurate judgments.

Our contributions are summarized as follows:

• We revisit the geolocalization task in the era of large reasoning models, which
naturally requires visual clue extraction and external knowledge retrieval. We
propose the GeoBench benchmark, which features high-resolution images with
high localizability challenge, various data types of global coverage, and allows
multi-level evaluation for insightful assessment.

• We propose GeoVista, which seamlessly integrates tool invocation within a dynamic
reasoning loop for complex geolocalization queries. We also provide a complete
training pipeline consisting of reasoning trajectory curation, cold-start SFT, and
reinforcement learning. We further adopt a hierarchical reward during the RL stage
for utilizing hierarchical information in geological labels.

• We also conduct extensive experiments to demonstrate the effectiveness of GeoVista
on GeoBench and perform analysis experiments to gain insights into our approach.

2 Related Work

2.1 Thinking with Images

Research on thinking with images evolved from treating images as inputs to using visual in-
termediates for reasoning. Visual CoT (Shao et al., 2024a) introduced localized intermediate
steps (e.g., boxes/regions) to guide attention; Visual Sketchpad (Hu et al., 2024) provided an
editable canvas to draw/crop/annotate during inference; and Visual Planning argued for
chains composed purely of images, replacing text with sequences of visual states. OpenAI
o3 (OpenAI, 2025b) marked a watershed by productizing tool-mediated visual reasoning
inside the chain (zoom, crop, rotate), triggering open replications.

After the emergence of OpenAI o3 (OpenAI, 2025b), Thyme (Zhang et al., 2025b) extends
this paradigm with a code-executing visual sandbox that emits and runs image operators;
mini-o3 (Lai et al., 2025) trains an agent to alternate “think–act” cycles with iterative region
selection and overturn masking, scaling to deep multi-turn search; OpenThinkIMG (Su
et al., 2025) unifies detectors, OCR, and drawing tools under a standardized controller
with RL-learned tool policies; and DeepEyes (Zheng et al., 2025) shows purely RL-induced
zoom behaviors without SFT. Collectively, these systems push beyond perception toward
interactive, auditable, tool-centric visual reasoning.

3



Figure 2 (Pipeline）

GeoVista Agentic Pipeline
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Figure 2: Image examples from GeoBench and the training data, and the agentic pipeline
of GeoVista. Given a query and image, the policy model iteratively generates thoughts and
actions; each action is parsed, executed, and yields a new observation, repeating this loop
until it outputs a final geolocation prediction or reaches the maximum interaction turn limit.

2.2 Real-World Geolocalization

Prior work on real-world geolocalization spans single-image, landmark, and cross-view
settings. Early global photo localization built on Im2GPS (Hays & Efros, 2008) and curated
YFCC100M subsets (Vo et al., 2017), emphasizing retrieval and metric learning. Landmark-
centric recognition leveraged Google Landmarks v2 (Weyand et al., 2020), improving preci-
sion where distinctive structures exist. Cross-view methods advanced with VIGOR (Zhu
et al., 2020), stressing generalization across cities for ground-to-aerial matching. Scaling to
worldwide street scenes, OpenStreetView-5M (Astruc et al., 2024) enabled training and fair
evaluation at unprecedented diversity and size. Complementing purely visual supervision,
GeoComp (Song et al., 2025) introduced human gameplay traces and reasoning sequences,
catalyzing explainable, step-wise localization beyond raw appearance cues.

3 Approach

3.1 Agentic Pipeline

Given a user query and an input image for geolocalization, the policy model iteratively pro-
duces a thought Ti and an action Ai (Fig.2). The action is parsed and executed to interact with
the environment, which yields a new observation Oi. This observation is then appended to
the interaction history and fed back into the policy model. The thought–action–observation
loop terminates when the model decides to present its final answer or reaches the limit of
interaction turns. The tools available to the model are of two types:

• Crop-and-Zoom. The policy model outputs a bounding box parameterized with
bbox 2d, which contains pixel coordinates used to crop and magnify regions of
interest. The observation is the magnified cropped subfigure.

• Web-Search. The policy model initializes a web search query to retrieve up to 10
relevant information sources from the internet. The web search service is provided
by a third-party provider, and the observation consists of textual documents with
web URLs.

3.2 GeoBench Benchmark

To ensure distributional diversity, we curate GeoBench and training data of GeoVista from
the cities worldwide. For automated labeling, each sample is accompanied by geolocaliza-
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tion metadata, including precise latitude and longitude. We state how we collect the raw
data in Sup.A.

Comparison with Existing Geolocalization Benchmarks We compare our GeoBench with
the existing benchmarks, we assess benchmarks along the following axes:

Table 1: Comparison across geolocalization datasets. GeoBench is the first benchmark
designed to evaluate the general geolocation ability of agentic models. It features reasonable
localizability, high-resolution imagery, and hierarchical evaluation.

Benchmark Year GC RC HR DV NE

Im2GPS (Hays & Efros, 2008) 2008 ✓
YFCC4k (Vo et al., 2017) 2017 ✓

Google Landmarks v2 (Weyand et al., 2020) 2020 ✓
VIGOR (Zhu et al., 2020) 2022 ✓

OSV-5M (Astruc et al., 2024) 2024 ✓ ✓ ✓
GeoComp (Song et al., 2025) 2025 ✓ ✓ ✓

GeoBench (ours) 2025 ✓ ✓ ✓ ✓ ✓

• Global Coverage. Whether the benchmark contains images from across the globe,
ensuring that the model does not overfit or bias its performance toward specific
regions.

• Reasonable Localizability. Whether the benchmark filters out non-localizable im-
ages or easily localizable landmarks to maintain meaningful localization difficulty.

• High Resolution. Whether all images in the benchmark have at least 1 M pixels to
support reliable visual clue extraction and grounding.

• Data Variety. Whether the benchmark includes two or more types of images to test
the generalizability of reasoning models under varying data conditions.

• Nuanced Evaluation. Whether the benchmark includes geolocation coordinates to
enable haversine distance computation for nuanced evaluation.

Localizability Filtering We also conduct localizability filtering to remove non-localizable
images and easily localizable landmarks. As we believe that images collected from the
Internet exhibit varying levels of localizability (Astruc et al., 2024), especially when the data
types and sources differ. Therefore, we remove two categories of data via model-based
filtering:

• Non-localizable images. These images usually lack identifiable geographical clues
and contain generic objects or scenes, such as close-up food photos, indoor rooms,
plain natural landscapes, or single animals. Such content provides almost no
regional or cultural context, making localization infeasible.

non-localizable localizable landmarks

Figure 3: Localizable vs Non-Localizable. We remove the non-localizable (orange) and
the landmarks (purple) from GeoBench, leaving only localizable images for rigorously
evaluating models.
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• Easily localizable landmarks. These images contain strong geographic priors,
typically featuring iconic landmarks or globally recognizable sites. Since VLMs
have likely encountered such images multiple times during pretraining, including
them would make geolocation trivial and fail to reflect genuine reasoning ability.

. . .Lima, Peru, specifically near the Larco Museum, 
frente al, Parque Larco . . .
1. Architectural Style: The neoclassical building 
with columns, ornate detailing . . .
2. Flag Identification: The Peruvian flag (red, white, 
blue, golden emblem) confirms . . .

Answer

Where is this place?

Multi-level labels Rule-based

Model-based

"country": true 
"province_or_state": true
"city": true

Multi-level results
Answer

Predictive Location

Address Extractor

Geocoding
Haversine
Computing

"dist": 5.63km

Haversine distance

1

2

Eu
ro
pe

Asia

No
rt
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Oceania

Figure 4: LEFT: The evaluation pipeline of GeoBench dataset. The evaluation system
consists of (1) Level-wise evaluation, which employs both rule-based and model-based
verifiers to determine correctness at different administrative levels, and (2) nuanced eval-
uation, which extracts the predicted address, applies geocoding to obtain the predicted
geolocalization point, and computes the haversine distance to the ground-truth location.
RIGHT: Geological distribution of GeoBench. GeoBench is a high-resolution, multi-source,
globally annotated dataset to evaluate models’ general geolocalization ability.

Level-wise Evaluation To support a fully automated, rule–based evaluation pipeline and
to enable in–depth analysis of models’ geolocalization capability, we develop multi–level
labels that include each image’s country, province or state, and city. With these multi–level
geographical labels, we combine a rule–based verifier for matching specific terms with
a model–based verifier (using OpenAI gpt-4o-mini) to validate the correctness of model
responses at different administrative levels.

Peruvian flag

Neoclassical building

"country": "Peru"
"province_or_state": "Lima"
"city": "Lima”
"location":

"lat": -12.04803,
"lng": -77.02632

Multi-level labels

" Larco Museum, Lima, Peru"

"lat": -12.072497,
"lng": -77.070861 

Geocoding Distance: 5.63 km

Extracted Address

Figure 5: Illustration of GeoBench dataset, along with level-wise and nuanced evaluation.

Nuanced Evaluation and Haversine Distance For some images with richer geographic
context, state–of–the–art (SOTA) models such as Gemini–2.5–Pro can recover much more
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detailed addresses to street level, e.g., “Schöneberger Straße, 22149 Hamburg, Germany.”
Hence we posit that a more fine–grained evaluation beyond city–level is required. How-
ever, models often cannot predict the geolocalization point directly, which makes nuanced
evaluation difficult.

To this end, as shown in Fig.4, for each response we extract the predicted textual location
and convert it into geodetic coordinates (latitude and longitude) via geocoding services (e.g.,
Google Geocoding API), thereby allowing us to compute the estimated haversine distance (km)
between the prediction point and the ground truth point (the geolocalization coordinates of
the metadata) in an automated fasion:

d = 2Re arcsin
(√

v
)

,

v = sin2
(

ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

) (1)

where (ϕ1, λ1) and (ϕ2, λ2) are the latitude/longitude pairs of the prediction point and the
ground truth point, and Re is Earth’s approximate radius.

Geological Distribution We aim to construct a dataset with diverse sources and broad
geographic coverage to evaluate both closed–source and open–source models on general
geolocalization ability. To this end, we sample 512 standard photos, 512 panoramas, and
108 satellite images from the raw data (see Sup.A) and conduct multi–level annotation for
each image. The data are high–resolution to support fine–grained visual reasoning, and the
images span 6 continents, 66 countries, and 108 cities worldwide, ranging from Xi’an to
Dublin to Washington, D.C. (Fig. 4).

3.3 Cold Start and Thinking Trajectory curation

We initially attempted to train the model (i.e., Qwen-2.5-VL-Instruct) using reinforcement
learning only, removing the need for cold-start supervised fine-tuning. However, the model
tended to produce overly concise responses and hesitated to make tool calls, leading to
unsatisfactory performance. This observation motivates the inclusion of explicit thinking
trajectories for supervised fine-tuning, thereby incentivizing multi-turn tool-use capabilities.

Inspired by how humans identify a place during geolocalization—first selecting several
candidate areas to inspect and then referencing external knowledge sources (e.g., Google
Search) for further information—we inject this prior into the cold-start data. As shown in
Fig.?? we use a VLM (Seed-1.6-vision (Seed, 2025)) to propose multiple regions (bounding
boxes) along with intermediate reasoning. After perceiving salient geographic cues, the
VLM is prompted to generate several web-search queries together with the accompanying
rationale, then we ask it to generate the reasoning for the final judgement.

Finally, we assemble the reasoning steps, bounding boxes, and web-search queries into a
coherent thinking trajectory with tool calls. As we only intend to provide the model with a
reasoning pattern prior, we did not apply answer-based filtering to the reasoning trajectories.
In this way, we curate 2,000 cold-start reasoning trajectory examples for geolocalization.

3.4 Reinforcement Learning

We apply a vanilla GRPO (Shao et al., 2024b) setting: each question q is passed to the policy
model, which generates a group of outputs {oi}G

i=1. Rewards ri are computed based on
response correctness (e.g., whether the model predicts the city where the photo is taken).
In our implementation, we do not include KL or entropy regularization. Formally, the
optimization objective is:
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Figure 6: LEFT: Thinking trajectory curation. We mimic human geolocalization by using
a VLM to propose tool calls and rationales, and assemble tool-call reasoning trajectories.
RIGHT: Comparison of GeoVista-7B and its counterpart w/o Hierarchical Reward.

JGRPO(θ) = E q∼D, {oi}G
i=1∼πθold

(·|q)

1
G

G

∑
i=1

[
min

(
πθ(oi | q)

πθold
(oi | q)

Ai, clip
(

πθ(oi | q)
πθold

(oi | q)
, 1 − ϵ, 1 + ϵ

)
Ai

)]
(2)

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
. (3)

However, because the data have multi-level labels, a reward that only grants credit when the
model predicts the correct city does not fully utilize the hierarchical information. Under this
simple reward, the model underperforms on GeoBench and makes fewer tool calls (Fig.6-
RIGHT). To address this, we adopt a hierarchical reward to fully leverage the multi-level
structure:

ri =


β2, if city-level correct,
β, if provincial/state-level correct,
1, if country-level correct,
0, else.

(4)

We set β > 1 so that correct answers at smaller administrative divisions receive larger
rewards. For example, for a photo taken in Los Angeles, we give a higher reward to the
answer “Los Angeles” than to “San Francisco,” because the former is correct at the city level,
although both are correct at the state level. To prevent β from being so large that reward gaps
become excessive, or so small that rewards collapse, empirically we choose a compromise
value of β = 2 in later experiments. As reinforcement learning incurs substantial cost,
particularly due to search API usage and the computational overhead of response-group
rollouts, we do not experiment with additional β values.

4 Training Recipe

Supervised Finetuning During the SFT process, we use Qwen2.5-VL-7B-Instruct (Qwen
et al., 2025) as the base model. In order to avoid out-of-memory error caused by overlong
trajectories, we set a max context length of 32768. We train on approximately 2000 cold-start
samples for 1 epochs. The learning rate is set to 1 × 10−5, with the global batch size is 32.

Reinforcement Learning During the reinforcement learning, we employ verl for
GRPO (Shao et al., 2024b) implementation with 12k training data size. The global size
is set to 64, with a mini-batch of 32. We use a constant learning rate of 1 × 10−6. During
the training we deprived the KL regularization (Cover & Thomas, 2006). And to maintain
training efficiency, we cap the maximum number of turns at 6 and set the maximum context
length to 32K tokens. We also implement concurrent workers for interactions with tools
during rollout to accelerate training.
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5 Experiment

5.1 Settings

Models We compare GeoVista against a comprehensive suite of models. This suite is
including closed-source systems—Gemini–2.5–pro, Gemini–2.5–flash (Team, 2025), GPT-
5 (OpenAI, 2025a), and Seed-1.6-vision (Seed, 2025)—which are supporting iterative tool
calls within their reasoning process. We are also comparing open-source, vision-capable
reasoning models such as Mini-o3-7B (Lai et al., 2025), DeepEyes-7B (Zheng et al., 2025),
and Thyme-RL-7B (Zhang et al., 2025b), which are sharing the same 7B parameter size
as our GeoVista. We also use the base model Qwen2.5-VL-Instruct (Qwen et al., 2025)
for comparison. It is worth noting that the closed-source models, although not publicly
specified, are likely having far larger parameter counts than 7B.

Tool Use Access We grant all open-source models identical access to the image–zoom-in
tool for visual regional inspection and to a real-time web-search tool for external information
retrieval. We adopt a thought–action–observation, ReAct-style (Yao et al., 2023) pattern
of tool calls in multi-turn interactions. For the closed-source models like GPT-5 (OpenAI,
2025a), which are already integrating comparable tools into their internal reasoning, we
simply issue the query in a single turn.

Evaluation For a rigorous and insightful evaluation of geolocalization performance, we
use GeoBench and conduct level-wise assessment at the country level, provincial level,
and city level, reporting accuracy at each level. To analyze performance across different
data types, we separately report city-level accuracy on panoramas, photos, and satellite
images. To further assess each model’s ability to produce fine-grained geolocalization
results, we conduct the nuanced evaluation and report two metrics: the proportion of
predictive locations with the haversine distance less than 3 km and the median haversine
distance.

Inference Following the Mini-o3 (Lai et al., 2025) setting, to prevent the models from
being overwhelmed by the context of the original high-resolution image, we are setting the
initial pixel budget to 2 M, meaning the original image is being downsampled to at most
2 M pixels before entering the visual encoder.

Table 2: The Comparison on GeoBench. The bold figures indicate the best performance
among closed-source and open-source models, and the underlined figures indicate open-
source results that surpass at least one of their closed-source counterparts.

Models Country (%) ↑ Provincial /
State (%) ↑ City (%) ↑ City (%)

(Panorama) ↑
City (%)
(Photo) ↑

City (%)
(Satellite) ↑

Close-sourced Models

Gemini-2.5-pro 97.20 86.78 78.98 78.32 77.54 88.14
GPT-5 94.09 77.69 67.11 69.47 67.92 53.39
Seed-VL-1.6 94.31 81.61 70.58 69.73 73.44 61.86
Gemini-2.5-flash 90.54 79.16 73.29 71.88 73.83 77.12

Open-sourced Models

Qwen2.5-VL-7B 58.93 42.91 32.57 24.22 44.73 16.10
Mini-o3-7B 20.14 11.52 11.30 6.05 16.02 13.56
DeepEyes-7B 54.20 36.08 30.56 19.92 42.58 24.58
Thyme-RL-7B 69.61 44.31 30.21 26.17 35.94 22.88
Geo-Vista-7B (ours) 92.64 79.60 72.68 79.49 72.27 44.92

5.2 Main Results

Our experimental results demonstrate GeoVista’s superior performance across metrics on
GeoBench, as shown in Table 2. We report results at multiple geographical levels and
additionally provide city-level accuracy on the GeoBench data types (i.e., panorama, photo,
and satellite images). Across these metrics, GeoVista achieves state-of-the-art performance
among open-source models. We also find that Gemini-2.5-pro achieves the best overall
performance on GeoBench among its closed-source counterparts.
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Table 3: Nuanced distance statistics of different
models’ performance on GeoBench. The bold fig-
ures indicate the best performance among closed-
source and open-source models.

Models <3km (%) ↑ Median
Distance (km) ↓

Closed-source Models

Gemini-2.5-pro 64.45 0.80
GPT-5 55.12 1.86
Seed-VL-1.6 54.00 2.22
Gemini-2.5-flash 58.11 1.67

Open-source Models

Qwen2.5-VL-7B 29.30 2209.82
Mini-o3-7B 9.57 13043.70
DeepEyes-7B 26.86 5174.93
Thyme-RL-7B 29.88 880.97
Geo-Vista-7B (ours) 52.83 2.35

It is worth noting that, despite having
far fewer parameters, GeoVista per-
forms on par with closed-source mod-
els on most metrics. We attribute this
performance to GeoVista’s learned rea-
soning prior and its ability to use tool
calls, especially the web-search tool.
This demonstrates the effectiveness
of GeoVista’s reasoning capabilities,
which extend beyond simple visual
grounding.

We also conduct the nuanced evalua-
tion of model predictions as shown in
Tab.3. We find that GeoVista achieves
high precision for real-world geolocal-
ization. For the two nuanced metrics
we report—the rate of haversine distance < 3 km and the median haversine distance
(Tab.3)—GeoVista, while leaving a small gap to closed-source models, substantially out-
performs other open-source models that think with images with the same tool access,
highlighting its superior reasoning performance.

5.3 Analysis

5.3.1 RQ1: The Ablation Study

Table 4: The Ablation Study. Ablations on cold-start SFT, RL, and hierarchical rewards show
SFT and RL are both indispensable, while hierarchical rewards further enhance multi-turn
geolocalization accuracy on GeoBench.

Models Median
Distance (km) ↓

City (%)
(Panorama) ↑

City (%)
(Photo) ↑

City (%)
(Satellite) ↑

Qwen-2.5-VL 2209.82 24.22 44.73 16.1

w/o Cold Start 55.32 48.52 43.63 27.46
w/o RL 11.17 54.88 57.23 29.66
w/o HR 4.11 75.0 68.95 40.68

Geo-Vista-7B 2.35 79.49 72.27 44.92

We present an ablation study to quantify the contribution of each component. The overall re-
sults appear in Table 4. Unless otherwise stated, we keep the same training hyperparameters
and evaluation settings.

Cold Start (SFT) To assess the necessity of cold-start SFT, we remove the cold-start stage
and conduct reinforcement learning directly. The results show that cold-start SFT is essential
for multi-turn tool use, as performance on GeoBench collapses without it.

Reinforcement Learning (RL) To examine the necessity of reinforcement learning, we
remove the RL and only conduct the cold-start SFT. The results show that SFT alone is not
sufficient: although the model learns a reasoning prior, it requires reinforcement learning to
incentivize and strengthen its reasoning capability.

Hierarchical Reward (HR) We also evaluate the necessity of the hierarchical reward. We
keep both the cold-start SFT and reinforcement learning, but disable the hierarchical reward
during the RL stage, using only a city-level reward. The results confirm the importance of
hierarchical reward.
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Figure 7: LEFT: The performance on the panorama validation set during the RL stage. We
observe nearly log-linear performance gains on the 512-panorama validation set. RIGHT:
The tool fail rate during RL training. The model’s erroneous tool-call rate decreases
during RL, suggesting it learns to avoid invalid or malformed calls, leading to improved
performance.

5.3.2 RQ2: The Scaling Effect in RL Stage

We hypothesize that model performance increases as the data size grows. Since RL data
do not require reasoning-trajectory annotations, we can easily scale the RL dataset to 12 k
samples. We apply different RL data sizes, including 1,500, 3 k, 6 k, and 12 k, using the
same cold-start SFT checkpoint. We report performance on a validation set consisting of
512 panoramas. The results show that performance consistently improves as the data size
increases. When plotting data size on a logarithmic scale against performance (Fig.7-LEFT),
we observe a nearly perfect data-scaling effect.

5.3.3 RQ3: Failure Tool Calls during RL

To further analyze the model’s behavior regarding tool calls during RL training, we record
the error tool-call rate. Error tool calls typically arise from invalid crop-tool bounding-box
parameters (e.g., x 1 greater than x 2 in bbox 2d) or incomplete json format tool-calls. An
interesting observation is that, although we do not directly optimize tool-call behavior
during RL, the model gradually produces fewer erroneous tool calls, showing a clear
decreasing trend in error rate as training progresses (Fig.7-RIGHT). We hypothesize that
erroneous tool calls reduce the model’s likelihood of reaching the correct answer within
limited turns, leading the model to implicitly learn to avoid such errors in its reasoning
trajectories.

6 Conclusion

Our research focuses on a challenging task—real-world geolocalization—which requires
searching for fine-grained visual clues and integrating external knowledge. We propose Geo-
Vista, an agentic model capable of visual reasoning and tool use, including crop–zoom-in
and web-search tools for deep, multi-step reasoning. To rigorously evaluate and obtain com-
prehensive metrics for real-world geolocalization, we introduce GeoBench, a benchmark
containing 1,142 high-resolution images from diverse global locations and three distinct
data types. We curate reasoning trajectories for both cold-start supervised fine-tuning and
reinforcement learning to further enhance reasoning and tool-use capabilities. We also pro-
pose a hierarchical reward to provide nuanced supervision during reinforcement learning.
Experimental results show that GeoVista outperforms other open-source baselines and
achieves performance comparable to closed-source models such as GPT-5 and Gemini-2.5-
flash on most metrics. Furthermore, we conduct detailed analyses for deeper insights. We
believe this work lays a solid foundation for future research on agentic visual reasoning and
real-world geolocalization.
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A Raw Data Collection

Panorama360 degree 
scene

Figure 8: The panorama pipeline in GeoBench and GeoVista training data.

To improve the generalizability of our model rather than fitting it to a single data type,
we query multiple types of raw data for GeoBench curation and training. The data types
include:

• Normal Photos. To obtain high-quality photographs of diverse scenarios (e.g.,
libraries, supermarkets, suburban areas), we collect photos from the internet. These
photos typically have least a resolution of 1600 × 1200.

• Panoramas. The source data are 360◦ street-view scenes from cities across the globe.
To make them compatible with multimodal LLM input, we convert them into planar
panoramas by stitching tiles retrieved via the Mapillary API and assembling them
locally. To balance detail with storage, each panorama is fixed at a resolution of
4096 × 2048.

• Satellite Images. The typical size of our satellite images is 2000 × 2000. We retrieve
recent Sentinel–2 Level–2A imagery for cities worldwide from the Microsoft Plane-
tary Computer, mosaic several low-cloud scenes within each city’s bounding box,
and save multiple images together with their metadata from different viewport
variants.

B Case Study
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Please analyze where is the place.

GeoVista Reasoning

[Begin of Agentic Thinking] <think>I focus on the upper right portion of 
the image, which showcases a prominent city with an extensive urban 
layout and a dense network of roads. This urban area is situated on the 
coast, adjacent to a large body of water that appears to be a bay. The 
coastline is . . . </think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[645, 97, 1385, 471]}}</tool_call>

<think>The isolated white patch in this zoomed satellite image appears to 
be a large man-made structure, likely a public or private park, sports 
facility, or industrial complex. Its distinct shape contrasts sharply with the 
surrounding densely packed urban grid and waterways. The location is a 
major coastal city, consistent with the original image’s context (e.g., Hong 
Kong). This feature could be Victoria Park (a historic park) or a modern 
waterfront development. The clarity and prominence of the white area 
suggest it holds regional significance. Analyzing this specific feature can 
reveal details about the urban planning, natural-human interaction, or 
cultural infrastructure of the city, providing deeper insight into its 
geography, economy, and social fabric.</think>

<tool_call>{"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[1066, 235, 1297, 353]}}</tool_call>

<think>Got it, let's try to figure out the location. First, the original image 
shows a large bay with a city on the coast, surrounded by mountains. This 
is characteristic of Hong Kong. The zoomed images show a city with an 
intricate road network, a major harbor with shipping activity, and a large 
white feature that looks like a harbor or port area. The streetscape, the 
bay, and the mountainous terrain all point to Hong Kong. The white feature 
could be a harbor, like Victoria Harbour. So putting it together, the original 
image is likely Hong Kong, specifically the Kowloon Peninsula area, with 
the HK International Airport (visible in the top left) and the main urban 
core of Hong Kong Island.</think> [End of Agentic Thinking]

<answer>The original image depicts Hong Kong, China. Key evidence:  
- Urban Layout . . . align with Hong Kong’s urban planning and geography.  

This matches Hong Kong’s iconic coastal layout, with Kowloon Peninsula 
stretching into Victoria Harbour.</answer>

Please analyze where is the place.

GeoVista Reasoning

[Begin of Agentic Thinking] <think>I focus on the black signboard above 
the entrance, which displays Chinese characters: ⻩南皓⼝博物館. 
Transcription: 'Yunnan Hua Gu Museum' (transliteration: 'Yǔnnán Huàgǔ
Bówùguǎn'). The text is yellow on black, traditional Chinese script 
(traditional for Yunnan). This signage likely identifies a museum’s name. 
The building has … suggesting a cultural….</think>

<tool_call> {"name": "image_zoom_in_tool", "arguments": {"bbox_2d": 
[253, 69, 1074, 385]}} </tool_call>

<think>...The sign says "云南皓珺博物馆" (Yunnan Haojun Museum) and 
the architectural style (gray stone, red doors) matches Yunnan's historic 
districts. From the search results, the museum is in Kunming, Yunnan, at 5 
Jinding Lane, Xishan District...</think> [End of Agentic Thinking]

<tool_response>"result": [
{
"href": "https://kunming.city8.com/zhuanyejigou/60034244_l1hc",
"body": "【云南皓珺博物馆】地址,电话,公交指南,位置示意图,地图位置,周边

酒店-昆明专业机构⻩⻚-昆明地图\n昆明地图. . ."
},
{
"href": "https://map.baidu.com/place/394a88d86219bcc53062128d",
"body": "云南皓珺博物馆:地址-云南省昆明市⻄⼭区敬德巷附5号…"

},
{
"href": "https://m.city8.com/kunming/scope/7ufcyd730qpvbdd973_address",
"body": "[昆明市⻄⼭区敬德巷附5号云南皓珺博物馆]详细位置,位置示意图,地

图位置,公交指南,附近酒店-昆明地址⻩⻚-昆明地图\n昆明地图\n/\n昆明⻩⻚\n
昆明市⻄⼭区敬德巷附5号云南皓珺博物馆\n详细位置+位置示意图 . . ."

},
… and 7 remaining items. </tool_response>

<think>The museum’s name '云南皓珺博物馆' (Yunnan Hua Gu Museum) 
suggests a museum in Yunnan Province, China. The architectural style (gray 
stone facade, red doors) aligns with Yunnan’s historic districts, likely 
Kunming. Searching this museum name will reveal its location, confirming 
if it’s in Kunming (e.g., part of the city’s heritage sites) and provide details 
about its exhibits or significance, helping determine the geographic 
location from the visual cues like stone walls, red doors, and urban 
setting.</think>

<tool_call>{"name": "search_web", "arguments": {"query": "云南皓珺博
物馆位置"}}</tool_call>

<answer>The original image is located at 云南皓珺博物馆 (Yunnan Haojun
Museum) in Kunming, Yunnan Province, China. Key evidence:  1. Museum 
Signage: The black sign ...</answer>

Figure 9: The Reasoning Trajectory of GeoVista. We provide additional cases to facilitate
the analysis of GeoVista’s reasoning trajectories and behavioral patterns, including one
satellite-image example and one photo example from GeoBench.
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